Volume 4, Issue 1, June 2018, Page: 1-8
Cobalt/Nickel Double Oxides Prepared by Two Methods Exhibiting Supercapacitive Performances
Dongxia An, College of Chemistry and Environmental Science, Hebei University, Baoding, China
Yu Zhang, College of Chemistry and Environmental Science, Hebei University, Baoding, China
Meigui Feng, College of Chemistry and Environmental Science, Hebei University, Baoding, China
Hong Zhang, College of Chemistry and Environmental Science, Hebei University, Baoding, China
Gang Ma, College of Chemistry and Environmental Science, Hebei University, Baoding, China
Cuimiao Zhang, College of Chemistry and Environmental Science, Hebei University, Baoding, China
Zhiguang Ma, College of Chemistry and Environmental Science, Hebei University, Baoding, China
Received: May 10, 2018;       Accepted: Jul. 9, 2018;       Published: Aug. 7, 2018
DOI: 10.11648/j.nsnm.20180401.11      View  515      Downloads  33
Abstract
Two different three-dimensional nanostructured cobalt/nickel layered double oxides grown on Ni foam (NF) were synthesized through one-step (NF/NiCo2O4) and two-step (NF/Co3O4/NiO) solvothermal method for flexible and high performance supercapacitor applications. The as-prepared composites have been systematically characterized by powder X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller analysis. The pseudocapacitive performances of composite electrode materials were investigated by the electrochemical tests. Cyclic voltammetry (CV), Galvanostatic charge–discharge (GCD) and Electrochemical impedance spectra (EIS) were performed using workstation. When the current density is 1 A/g, the capacitance of NF/Co3O4/NiO electrode material is 992 F/g; the capacitance of NF/NiCo2O4 is 239 F/g. And the retention of NF/NiCo2O4 electrode is 93.8% after 2000 cycles. From this comparison, it could see that the NF/Co3O4/NiO electrode exhibits more than four times higher specific capacitance at a current density of 1 A/g, good capacitance retention and excellent cycling stability than NF/NiC2O4 electrode. Furthermore that the specific capacitance of NF/Co3O4/NiO electrode increases after testing for 2000 cycles. And it can see the comparison between the interfacial charge transfer resistance (Rct) (occurring at the electrode/electrolyte interface and double layer capacitance caused by Faradaic reactions) and Warburg resistance (W), (corresponding to the ion diffusion in the host material diffusive resistance of the electrolyte in the electrode surface). The Nyquist plots are characteristic of being able to separate the charge transfer resistance and series resistance directly. However it is evident that the Nyquist plot of NF/Co3O4/NiO electrode is higher than that of NF/NiCo2O4 and NF/Co3O4 electrodes, demonstrating the Rct and Warburg resistance (W) of NF/Co3O4/NiO electrode is higher. The comprehensive test results show that the NF/Co3O4/NiO coreshell nanostructure arrays with remarkable electrochemical properties could be considered as potential electrode materials for next generation supercapacitors in high energy density storage systems.
Keywords
Cobalt/Nickel Layered Double Oxides, Hydrothermal Method, Supercapacitor
To cite this article
Dongxia An, Yu Zhang, Meigui Feng, Hong Zhang, Gang Ma, Cuimiao Zhang, Zhiguang Ma, Cobalt/Nickel Double Oxides Prepared by Two Methods Exhibiting Supercapacitive Performances, Nanoscience and Nanometrology. Vol. 4, No. 1, 2018, pp. 1-8. doi: 10.11648/j.nsnm.20180401.11
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Y. Cheng, S. Lu, H. Zhang, C. V. Varanasi, J. Liu, Nano Letters, 12 (2012) 4206.
[2]
G. Gao, H. B. Wu, S. Ding, L. M. Liu, X. W. Lou, Small, 11 (2015) 804-808.
[3]
J. R. Miller, P. Simon, Science, 321 (2008) 651-652.
[4]
M. Winter, R. J. Brodd, Cheminform, 35 (2004) 4245.
[5]
Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, Energy & Environmental Science, 4 (2011) 1440-1446.
[6]
C. Kim, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, Y. J. Kim, M. Endo, S. C. Yang, Advanced Materials, 19 (2007) 2341-2346.
[7]
E. Tamburri, M. Angjellari, M. Tomellini, S. Gay, G. Reina, T. Lavecchia, P. Barbini, M. Pasquali, S. Orlanducci, Electrochimica Acta, 157 (2015) 115-124.
[8]
G. Wang, L. Zhang, J. Kim, J. Zhang, Journal of Power Sources, 217 (2012) 554-561.
[9]
A. K. Mondal, B. Wang, D. Su, Y. Wang, X. Zhang, G. Wang, Journal of the Chinese Chemical Society, 59 (2012) 1275–1279.
[10]
H. Zhang, G. Cao, Y. Yang, Energy & Environmental Science, 2 (2009) 932-943.
[11]
C. D. Lokhande, D. P. Dubal, O. S. Joo, Current Applied Physics, 11 (2011) 255-270.
[12]
M. Mastragostino, C. Arbizzani, F. Soavi, Journal of Power Sources, 97 (2001) 812-815.
[13]
Y. Xiao, S. Liu, L. Feng, A. Zhang, J. Zhao, S. Fang, D. Jia, Advanced Functional Materials, 22 (2012) 4051-4051.
[14]
W. Du, R. Liu, Y. Jiang, Q. Lu, Y. Fan, F. Gao, Journal of Power Sources, 227 (2013) 101-105.
[15]
X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, Acs Nano, 6 (2012) 3206.
[16]
R. B. Rakhi, W. Chen, D. Cha, H. N. Alshareef, Nano Letters, 12 (2012) 2559.
[17]
X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. L. Maria, Y. Yang, H. Zhang, H. H. Hng, Nano Research, 3 (2010) 643-652.
[18]
S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, J. H. Jang, Acs Applied Materials & Interfaces, 5 (2013) 1596.
[19]
J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, Angewandte Chemie, 125 (2013) 1708-1711.
[20]
Z. Yu, B. Duong, D. Abbitt, J. Thomas, Advanced Materials, 25 (2013) 3302-3306.
[21]
X. W. and, Y. Li, Journal of the American Chemical Society, 124 (2002) 2880-2881.
[22]
G. Wang, L. Zhang, J. Zhang, Cheminform, 41 (2012) 797.
[23]
B. Wang, X. He, H. Li, Q. Liu, J. Wang, L. Yu, H. Yan, Z. Li, P. Wang, Journal of Materials Chemistry A, 2 (2014) 12968-12973.
[24]
Mathieu Toupin, Thierry Brousse, †, ‡ And, Daniel Bélanger, Chemistry of Materials, 16 (2004) 3184-3190.
[25]
Y. Si, T. Ren, B. Ding, J. Yu, G. Sun, Journal of Materials Chemistry, 22 (2012) 4619-4622.
[26]
H. Y. Lee, J. B. Goodenough, Journal of Solid State Chemistry, 148 (1999) 81-84. L. Su, Y. Wang, Y. Sha, M. Hao, Journal of Alloys & Compounds, 656 (2016) 585-589.
[27]
Z. Fan, J. Chen, K. Cui, F. Sun, Y. Xu, Y. Kuang, Electrochimica Acta, 52 (2007) 2959-2965.
[28]
T. Liu, Y. Li, G. Quan, P. Dai, X. Yu, M. Wu, Z. Sun, G. Li, Materials Letters, 139 (2015) 208-211.
[29]
K. Xu, R. Zou, W. Li, Y. Xue, G. Song, Q. Liu, X. Liu, J. Hu, Journal of Materials Chemistry A, 1 (2013) 9107-9113.
[30]
K. Wang, Z. Zhang, X. Shi, H. Wang, Y. Lu, X. Ma, Rsc Advances, 5 (2014) 1943-1948.
[31]
H. Jin, T. Okamoto, M. Ishida, Energy & Fuels, 12 (1998) 1272-1277.
[32]
Y. Zhang, J. Wang, L. Yu, L. Wang, P. Wan, H. Wei, L. Lin, S. Hussain, Ceramics International, (2016).
[33]
F. Wang, J. Wang, H. Ren, H. Tang, R. Yu, D. Wang, Inorganic Chemistry Frontiers, 3 (2016) 365-369.
[34]
J. M. Won, S. H. Choi, Y. J. Hong, N. K. You, Y. C. Kang, Scientific Reports, 4 (2014) 5857.
[35]
G. Zhang, L. Yu, H. B. Wu, H. E. Hoster, X. W. Lou, Advanced Materials, 24 (2012) 4609-4613.
[36]
H. Han, B. Guan, B. Xia, W. L. Xiong, Journal of the American Chemical Society, 137 (2015) 5590.
[37]
Y. Huang, Y. E. Miao, H. Lu, T. Liu, Chemistry, 21 (2015) 10100.
[38]
B. Cui, H. Lin, J. B. Li, X. Li, J. Yang, J. Tao, Advanced Functional Materials, 18 (2010) 1440-1447.
[39]
T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, C. C. Hu, Advanced Materials, 22 (2010) 347-351.
[40]
X. Gong, J. P. Cheng, F. Liu, L. Zhang, X. Zhang, Journal of Power Sources, 267 (2014) 610-616.
[41]
Z. Zhang, H. Zhang, X. Zhang, D. Yu, Y. Ji, Q. Sun, Y. Wang, X. Liu, Journal of Materials Chemistry A, 4 (2016).
[42]
J. H. Zhong, A. L. Wang, G. R. Li, J. W. Wang, Y. N. Ou, Y. X. Tong, Journal of Materials Chemistry, 22 (2012) 5656-5665.
[43]
F. Gao, J. Qu, Z. Zhao, Q. Zhou, B. Li, J. Qiu, Carbon, 80 (2014) 640-650.
[44]
X. Meng, M. Feng, H. Zhang, Z. Ma, C. Zhang, Journal Of Alloys And Compounds, 695 (2017) 3522-3529.
[45]
X. Xie, L. Gao, Carbon, 45 (2007) 2365-2373.
[46]
J. Xu, S. Gai, F. He, N. Niu, P. Gao, Y. Chen, P. Yang, Dalton Transactions, 43 (2014) 11667-11675.
[47]
K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S. M. Pourmortazavi, F. Ahmadi, H. R. Naderi, M. R. Ganjali, Journal of Materials Science Materials in Electronics, 27 (2016) 4541-4550.
[48]
L. Xie, Z. Hu, C. Lv, G. Sun, J. Wang, Y. Li, H. He, J. Wang, K. Li, Electrochimica Acta, 78 (2012) 205-211.
[49]
V. Gupta, S. Gupta, N. Miura, Journal of Power Sources, 175 (2008) 680-685.
[50]
J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, Angewandte Chemie, 125 (2013) 1708-1711.
Browse journals by subject