Recent Advance and Future Perspective of 2D MXene for Energy Storage: Mini Review
Adisu Girma Zewudie,
Gudisa Hailu Chala
Issue:
Volume 8, Issue 2, December 2022
Pages:
15-22
Received:
8 October 2022
Accepted:
10 November 2022
Published:
8 December 2022
DOI:
10.11648/j.nsnm.20220802.11
Downloads:
Views:
Abstract: MXene is deemed to be one of the best attentive materials in an extensive range of applications due to its stupendous optical, electronic, thermal, and mechanical properties. Different MXene-based nanomaterials with extraordinary characteristics have been proposed, prepared, and practiced as a catalyst due to its two-dimensional (2D) structure, large specific surface area, facile decoration, and high adsorption capacity. Transition metal carbides and/or nitrides (MXenes), a developing class of 2D layer-structure compounds, are being given a lot of attention as one of the most promising classes of energy storage materials due to their numerous advantages, including high electrical conductivity, tunable layer structure, small band gap, and functionalized redox active surface. Bottom-up synthesis, which uses chemical vapor deposition, a template approach, and pulsed laser deposition with plasma enhancement, and top-down synthesis, which uses etching and exfoliation, are the two basic types of synthesis. In this review paper, more than 56 articles where reviewed on 2D MXene materials along with their application in energy storage battery. Numerous applications for energy storage exist for nanomaterials based on (2D) MXene. Even though 2D MXene could have some drawbacks, a lot of research has gone into nanoengineering these 2D materials to improve their functionality for real-world applications. Recent literature has described various uses for 2D MXene materials in lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, and supercapacitors. To progress in facilitating their industrial application, the difficulty and prospective future are also examined.
Abstract: MXene is deemed to be one of the best attentive materials in an extensive range of applications due to its stupendous optical, electronic, thermal, and mechanical properties. Different MXene-based nanomaterials with extraordinary characteristics have been proposed, prepared, and practiced as a catalyst due to its two-dimensional (2D) structure, lar...
Show More